
392 

S H O R T  C O M M U N I C A T I O N S  

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 
words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. 

Acta Cryst. (1988). A44, 392-393 

Current flow in reflection electron microscopy and R H E E D .  By L. D. MARKS and Y. MA, Materials Research 

Center, Northwestern University, Evanston, IL 60208, USA 

(Received 9 October 1987, accepted 10 November 1987) 

Abstract 
Application of simple Bloch-wave theory to reflection elec- 
tron microscopy and diffraction leads to inconsistent results 
- there are not enough boundary conditions to generate a 
unique solution. To overcome this problem in the past the 
solution for a thick slab has been used instead of that for 
a single surface. It is shown that a simpler method valid 
for a single surface is to insist that only Bloch waves with 
current flow into or parallel to the crystal surface are 
allowed. Because of the equations of continuity, this is 
identical to insisting that only decaying waves are excited 
in the crystal. An additional feature of this simpler method 
is that the allowed Bloch waves can be readily represented 
on a dispersion-surface construction. 

In principle the basic analytical solutions for electron 
diffraction in a material can be directly solved by Bloch- 
wave methods. Whilst their application to transmission 
electron microscopy and diffraction is tried and tested, far 
less has been done to apply them to the important problem 
of reflection electron microscopy (REM) or reflection high- 
energy electron diffraction (RHEED).  The intention of this 
note is to point out an important physical point which we 
have encountered in the process of developing a numerical 
Bloch-wave program for the reflection case, namely the role 
of current flow in determining which Bloch waves are 
excited in the crystal. 

The basic theoretical methods for setting up the Bloch- 
wave solutions can be found in, for instance, the article by 
Metherell (1975) and will not be repeated here. In a nutshell, 
the problem reduces to matching from the incident wave 
vector to the dispersion surface along a line drawn normal 
to the surface of the crystal, as illustrated in Fig. 1. (We 
shall not discuss evanescent waves, as they do not play a 
role in our analysis here, although in reality they must be 
taken into account in any reasonable model of the diffrac- 
tion.) If one assumes that the line cuts the dispersion 
surface, there are two possible Bloch waves which can be 
excited in the crystal for each branch of the dispersion 
surface. Assuming n different branches, we therefore have 
a maximum of 2n different Bloch waves, n different reflec- 
ted waves and (after matching the wave and its derivative 
across the crystal surface) a total of 2n boundary conditions. 
As it stands we do not have enough boundary conditions 
to solve for the Bloch- and diffracted-wave amplitudes. 

In the conventional transmission electron diffraction case 
we solve the analogous problem by insisting that the Bloch- 
wave vectors must be directed into the crystal. For instance, 
in the high-energy approximation the wave vectors occur 

in plus and minus pairs, and we then neglect one of the 
signs (which depends upon the convention used in defining 
an incident plane wave). It rapidly became apparent when 
we tried some numerical tests that this does not work in 
the reflection electron case. The reason is that the two 
possible wave vectors for each branch of the dispersion 
surface need not arise in pairs directed into and out of the 
crystal, as illustrated in Fig. 1 (see also Table 1). A method 
proposed by Moon (1972) and by Colella (1972) and Colella 
& Menadue (1972) is to solve the problem instead for a 
thick slab with two surfaces rather than just one. Now there 
are enough boundary conditions, and in the limit of a very 
thick slab with absorption included only n Bloch waves 
will be excited within the the crystal. 

A simpler method of finding the additional n boundary 
conditions is to exploit the principle of causality. Physically, 
the electron beam must travel down the microscope column, 
reach the crystal surface and then either be reflected or 
enter the crystal. For any Bloch wave of general form 

b(r, k) =~ Cg exp [27ri(k+g). r] (I) 
g 

the direction of current and energy flow S (proportional to 
the expectation value of the Bloch-wave momentum and 
the group velocity of the Bloch wave and similar to the 

O 

Fig. 1. Illustration of matching from the incoming wave vector to 
the dispersion surface in the reflection case. For the branch 
shown, only wave 1 is excited in the crystal, not wave 2, even 
though the wave vectors for both (kt and k2) are into the crystal, 
as indicated by the current-flow directions $1 and $2. 
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Table 1. Values for the real and imaginary components of  
the wave vector and the current-flow vector for a nine-beam 

calculation of a real test potential 

The direction of the surface normal is along the z axis. Note that 
the signs of the wave vectors and the current flow are not always 
the same. 

k,z kiz Sz 
1 1"21079200 0 . 0 0 0 0 0 0 0 0  0"64091170 
2 -1.21079200 0"00000000 -0"64091770 
3 0"79729930 0"00000000 0"35488550 
4 0"76076230 0"00000000 0"31050750 
5 -0"79729790 0"00000000 -0"35502030 
6 -0"76076210 0"00000000 -0"31294940 
7 0"54941490 0.00000000 0"27685250 
8 -0-54941450 0"00000000 -0"27872131 
9 0"23151970 0"11244540 0"00000000 

10 0"27873130 0.00000000 0"16785510 
11 0"23151990 -0.11244520 0"00000000 
12 0"19733600 0"00000000 -1.16209000 
13 -0"23151930 0"11244520 0.00000000 
14 -0"27873170 0"00000000 -0"26795830 
15 -0"23151930 -0"11244500 0-00000000 
16 0"07455112 0.00000000 0.47119920 
17 -0"19335300 0.00000000 2"04193400 
18 -0"07455094 0.00000000 -1"21555400 

Poynting vector in X-ray diffraction) is given by 

S = r e a l p a n o f [ ( h e / m ) ~ .  }Cgl2(k+g)]. (2) 
g 

(S is proportional to the mean value of the probability- 
current density averaged over a unit cell if k is real.) 

The vector S defined by (2) determines the true path of 
the electron wave, and geometrically is normal to the disper- 
sion surface, not in general along the direction of the wave 
vector. (Note that it is wrong to use the wave vector to 
describe the electron path.) Clearly, if  the current flow of 
a Bloch wave is not into the crystal, it is unphysical to 
consider that this Bloch wave is excited even if the wave 
vector is directed into the crystal. For the two possible 
Bloch waves corresponding to each branch of the dispersion 
surface, geometrically (see Fig. 2) the current-flow vectors 
must correspond to one of three cases: (a) pairs directed 
into and out of the surface; (b) for the special case when 
the cut is tangential to the dispersion surface, the two 
solutions are equivalent and the current flow is parallel to 

Fig. 2. Illustration of the three possible cases described in the text. 

the surface; or (c) for an evanescent wave again only one 
solution exists with current flow parallel to the surface. 
Therefore we have only n possible Bloch waves (travelling 
or evanescent) within the crystal after we have applied this 
boundary condition. As a hard example, Table 1 lists the 
wave vectors and current flow perpendicular to the crystal 
surface from a numerically calculated example (with an 
arbitrary real potential). It should be noted that the signs 
of the wave vectors and the current-flow vectors do not 
correlate in general. 

An additional and important point is that this condition 
also guarantees that all the Bloch waves of interest decay 
into the crystal. This we can prove with the continuity 
equation (e.g. Schiff, 1968) 

dP(r ,  t ) /d t  + V.  j = - 2  V~(r)P(r, t), (3) 

where P(r, t) is the probability density as a function of 
space and time, V~(r) is the imaginary component of the 
potential and j is the probability-current density, given by 

j = h/47r Im [~*(r)V~(r)  - ~(r)Vg,*(r)]. (4) 

For any Bloch wave in (3) which is time independent, after 
cancelling the common term exp (-4zrki .  r), where ki is 
the imaginary component of the wave vector, and integrat- 
ing over a unit cell we obtain 

(2"rr/e)S. k, = ~ [b(r, k)12 V~(r) dr. (5) 

Since the fight-hand side is necessarily positive, it follows 
that 

S .  ki > 0. (6) 

As the imaginary component for the reflection case can 
only exist normal to the plane of the surface, all the waves 
are decaying into the crystal. 

For completeness, it should be mentioned that Kohra, 
Moliere, Nakano & Ariyama (1962) also appear to have 
used the concept of energy flow to reduce the boundary 
conditions for a four-beam Bloch-wave solution in the 
reflection case, although these authors did not extend the 
argument to the general n-beam case, point out that this 
approach will always reduce the number of possible waves 
to n or less or show that this condition forces all the waves 
to be decaying. 

As a final point, it should be noted that the same argu- 
ments hold for the transmission case, and are more rigorous 
than the normal arguments based solely on the sign of the 
Bloch-wave vector. Here the Bloch wave with a current 
flow out of the crystal also has a wave vector oriented out 
of the crystal, so that one can exclude one of the two wave 
vectors just by its sign. 
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